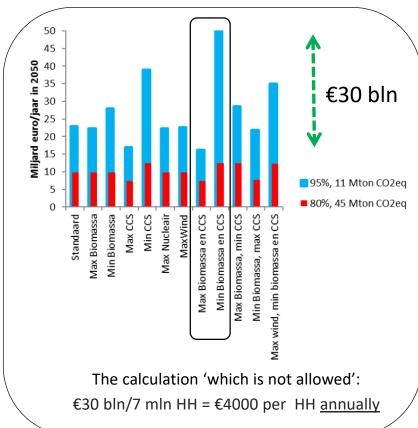


Sustainable gases and gas infrastructure in 2030/2050

Assume it is 2050. We have failed in the reduction of our CO2 footprint. What would have been the reason?

- A. Technically it was not feasible
- B. Lack of natural resources like Lithium
- C. Society did not accept the necessary changes: Nimby etc.
- D. Society did not accept the transition costs
- E.

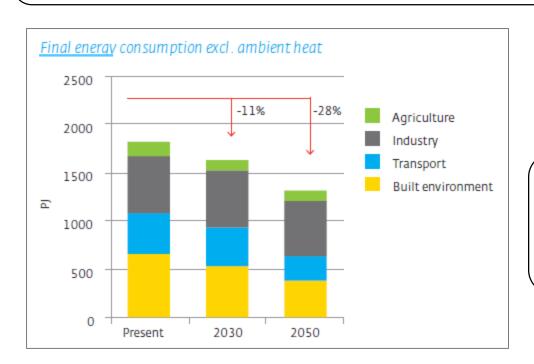

PBL: large variations in transition costs are dependent on options employed; the national costs include learning curves and savings

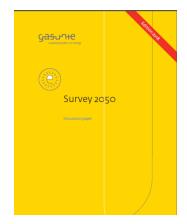
Note: These pathways are 'reasonable', no extremes

Tabel 2.1. Randvoorwaarden voor de met OPERA doorgerekende varianten. 2050

	Maximale CO ₂ opslag Mton CO ₂ /jaar	Maximale inzet bio- massa (PJ)	Biomassa binnen- land (PJ)	Biomassa buiten- and (PJ)	Maximale capaciteit Wind op land (GW)	Maximale capaciteit Wind op zee (GW)	Maximale capaciteit kern- energie (GW)
Standaard	25	400	143	258	7	40	0
Max Biomassa	25	700	143	558	7	40	0
Min Biomassa	25	250	143	108	7	40	0
Max CCS	50	400	143	258	7	40	0
Min CCS	10	400	143	258	7	40	0
Max Nucleair	25	400	143	258	7	40	10
MaxWind	25	400	143	258	14	80	0
Max Biomassa en CCS	50	700	143	558	7	40	0
Min Biomassa en CCS	10	250	143	108	7	40	0
Max wind, min bio- massa en CCS	10	250	143	108	14	80	0
Max Biomassa, min CCS	10	700	143	558	7	40	0
Min Biomassa, max CCS	50	250	143	108	7	40	0

Current biomass: 80 PJ


Source: "Verkenning Klimaatdoelen", October 2017

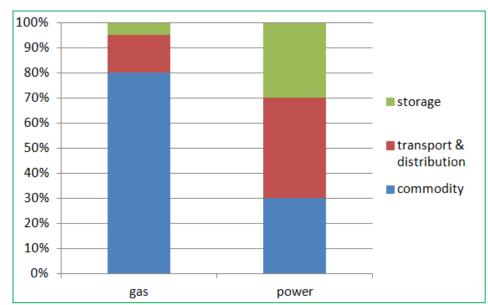


Our energy demand will remain substantive

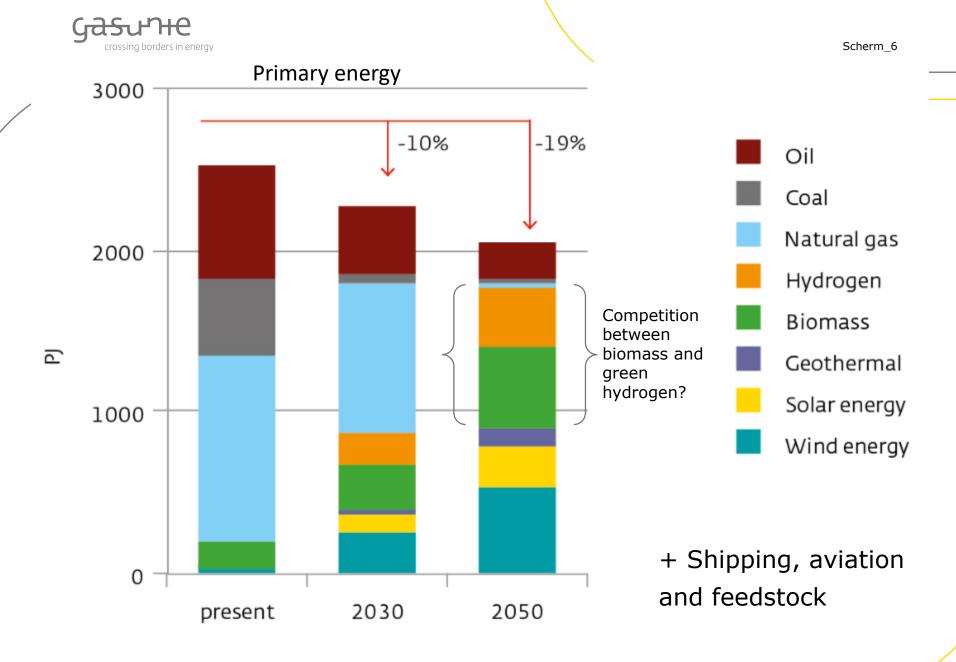
Gasunie has studied the potential consequences of this policy in depth and has published the results: Gasunie Survey 2050 (January 2018).

- Feasibility, Flexibility, Security of Supply and Costs
- Others have done the similar studies, with similar results

Some other conclusions


- Natural gas demand in NL remains relative flat until 2030
- Hydrogen becomes important

How to develop a sustainable energy system at the lowest costs?


Costs of the energy system are Commodity + Transmission + Storage

- For gas, oil and coal, the main costs are in the commodity
- For electricity, the main costs are in transmission & distribution and 'storage'.
- Gas transport and distribution is 10-20x cheaper than electricity (kW)
- Gas storage is 1000x cheaper than electricity storage (kWh)
- Any comparison based on commodity only is incorrect

Schematic of system costs gas & electricity

Note: households pay more for the electricity distribution networks, than for electricity itself; (also without solar panels).

Source: Gasunie Survey 2050

Sustainable gases and gas infrastructure are needed to minimize the transition costs

- The claim of 'electrifying everything' is doubtful
 - Most studies end up with 35-40% electrification; up from 18% now
 - The costs of electricity transport, distribution and storage drive up energy transition costs and will ultimately pose the energy transition at risk.
 - Note: average CO2 emissions from electricity are still 250% of natural gas.
- A CO2-free system with gas infra requires CO2 free gases:
 - Biomass has to play an important role
 - Scaling up green gas production from (imported) biomass
 - Including CCS to achieve at negative emissions
 - Around 2025/2030, hydrogen from offshore wind (or desert-solar) may start to compete

Gasunie has proposed to develop, with partners, a national H2-system, including the development of a national H2-infrastructure by 2030

Since creating an economy with hydrogen as energy carrier will not occur automatically, since there is a need for:

- 1. System approach
- 2. Learning curves
- 3. Economies of scale
- 4. Market development

Analogy to the development of the natural gas market