Developing the Hydrogen Economy

Prof. Dr. Ad van Wijk

6-9-2018

Ast f

A

Challenge the future

Bids for Saudi Arabia's 300 MW Solar Plant

Developing the Hydrogen Economy

TUDelft

Delft

University of

Levelized Cost of Electricity

Source: IRENA Renewable Cost Database and Auctions Database.

IRENA, January 2018, Renewable Power Generation Costs 2017

Surface needed to produce all the world's energy 556 EJ = 155.000 TWh

10% SOLAR AUSTRALIA

1.5% WIND PACIFIC OCEAN

Tokyo Olympic Games 2020

Hydrogen Shipping (~2025)

Offshore Wind Development Germany

VATTENFALL BUILDS WIND FARM WITHOUT SUBSIDY

19 March 2018

- Chinook, daughter Vattenfall
- 700 MW wind farm
- Operational 2022
- Location Hollandse Kust (Zuid)
- 22 km from the coast

Eemshaven; The Energy Harbor

Norned Cable 700 MW Cobra Cable 700 MW (2019) Gemini Offshore Wind Farm 600 MW Onshore Wind Farms > 275 MW Nuon Magnum power plant 1,320 MW RWE Coal fired power plant 1,560 MW Engie Gas fired power plant 2,450 MW

Cable Inland 4,000 MW Expansion to 5,610 MW

Electricity and Gas Transport Grid

TUDelft Delft University of Technology

European Gas Infrastructure

5 GW Mohammed Bin Rashid Al Maktoum Solar Park in Dubai

Largest CSP project in the world

• 700MW CSP,

man boll of the share of the

\$3.9 billion investment

Central Tower

Parabolic Troughs

Auxiliary solar PV

Tariff

• PPA

• Dispatch:

15 hours storage

100 MW 3x200 MW 4x33 MW 7.3 ct/kWh 35 years between 4pm and 10am

Developing the Hydrogen Economy

12

Cable versus pipeline cost						
	Cable (BritNed)	Pipeline (BBL)				
Capacity	1 GW	15 GW				
Construction Cost	€ 500 mln	€ 500 mln				
Volume (year)	8 TWh	120 TWh				

Transport and Distribution gas grids can be easily converted to hydrogen

- No technical issues, compressor needs to be adjusted
- System design development necessary; hydrogen quality, flow velocity, pressure, odorization, hydrogen measurement equipment, sensors, etc.
- Conversion cost are 5-10% of investment cost new pipeline

Developing the Hydrogen Economy

14

Hydrogen production

Source	Process	Efficiency Today	HYDROGEN Production technologies
Natural gas Bio Gas	Steam reforming Solid Oxide Fuel Cell	72% 80% (40-40)	CON- CONTRACTOR
Coal/Oil	Gasification	56%+ (=syngas)	BOARD CONTRACT
Biomass	Gasification	44%+ (=syngas)	Construction H2
Electricity + Water	Electrolysis Alkaline and PEM	75-80% (90% exp.)	Concernent H2
Sunlight + Water	Photoelectrochemical	14% (lab)	Energy source

Gas-Hydrogen production with CO₂ storage in Smeaheia field

NEL 400 MW Alkaline Electrolyzer

- Working on GIGA factory concept for renewable hydrogen production to <u>outcompete</u> natural gas reforming
- Largest electrolyser plant ever designed
- Addressing a USD ~ 150 billion market

July 2017

- International industrial customer
- Tied to solar power
- CapEx of USD ~175 million
- Benchmark CapEx ratio:
 - 0.45 MUSD/MW

nel

ŤUDelft

Hydrogen Cost development

	Investment	Efficiency	Electricity Price	Hydrogen
	cost		Offshore Wind	Price
	Euro/kW		Euro/MWh	Euro/kg
Till	600-900	72-75%	40-50	3-4
2020				
2020-	300-600	75-78%	30-40	2-3
2025				
2025-	250-400	78-80%	25-35	1.5-2.5
2030				
After	<250	>80%	20-30	1-1.5
2030				= Grey H ₂

Hydrogen cost at fueling station 10 NOK = 1 Euro

http://nelhydrogen.com/assets/uploads/2018/07/nel-q1-2018-presentation.pdf

Gas and electricity consumption in the Netherlands

Solar power production in Germany

¹⁰ Nov Developing the Hydrogen Economy

Hydrogen storage in Salt Caverns

1 salt cavern can contain 6,000 ton hydrogen Equivalent of 17 million Tesla Power walls

Salt formations and caverns in Europa

Roof versus Desert Solar

In a renewable energy system it is all about system cost, not system efficiency

Developing the Hydrogen Economy

TUDelft

Delft

University of Technology

Hydrogen Coalition

3-4 GW electrolyser capacity 2030

Developing the Hydrogen Economy

Gasunie

Backbone Hydrogen Infrastructure 2030, 15 GW capacity, 1 billion Euro